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II. Classification and identification

Artificial neural networks as a tool for species identification of
fish schools
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Fish schools of sardine, anchovy, and horse mackerel can be discriminated from each
other, under given conditions, using a set of parameters extracted from echo-
integration data. Trawl sampling and hydroacoustic data were collected in 1992 and
1993 in the Thermaikos Gulf by using a towed dual-beam 120 kHz transducer. The
parameters extracted from the available schools were used to train multi-layered
feed-forward artificial neural networks. Various applied networks easily generated
associations between school descriptors and species identity, providing a powerful tool
for classification. The expertise of the trained network was tested with data from
identified schools not used in training. The use of neural networks cannot replace
classical statistical procedures, but offers an alternative when there are significant
overlaps in the school characteristics and the parametric assumptions are not satisfied.
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Introduction
The development of fish-species identification techniques
based on hydroacoustic data is one of the keys for the
reduction of error in biomass estimation. Echogram
scrutinizing methods, combined with concurrent trawl-
ing data and human experience are time-consuming and
subjective. Most of the recent improvements attempt to
extract from the backscattered echo signals a set of
quantitative parameters that could sufficiently describe
the structure of particular fish aggregations (Diner et al.,
1989; Georgakarakos and Paterakis, 1993) or acoustic
populations (Gerlotto and Fréon, 1988) and support the
species identification procedures.
The selection of the best descriptors, and the accuracy

of classification, are the two main associated problems.
Classical statistical methods, such as PCA (principal
components analysis) and DFA (discriminant function
analysis), are the most commonly performed techniques
in this area (Scalabrin et al., 1992). However, the strict
constraints limit the reliable use of the above procedures
in some cases.
Feed-forward artificial neural networks (ANN) do not

demand any assumptions concerning the distributions.
They are now widely used for regression, classification,

and discrimination, though their use is rather new in fish
school identification and classification problems. The
aim of the present study is to discuss features of neural
networks which could serve as a tool for classification,
and to present neural network applications for the
species identification of small pelagic fish schools.

Materials and methods
Data acquisition and extraction of descriptors

School data were obtained from hydroacoustic surveys
with the RV ‘‘Philia’’ in the Thermaikos Gulf in
1992 and 1993. Data were collected using BioSonics
dual-beam equipment operated at 120 kHz. The pulse
duration was 0.5 ms and integration was carried out
over 1 m intervals through the water column. The
data have been analysed by using ‘‘School’’ software,
developed in IMBC (Georgakarakos and Paterakis,
1993), for school identification and extraction of the
required parameters. The software includes the
following routines.
‘‘SCROLL’’: The formation of the echogram is based

on a set of elements (pixels) with a resolution equal to
1 m on the vertical axis and to 1 ping interval on the
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horizontal axis (Fig. 1). The area of each element is
defined as the product of the horizontal distance
between two successive pings in metres and the vertical
distance between two successive integration layers.
‘‘FILTER’’: Three procedures have been used to

perform school recognition: (i) an echo-integration
threshold in order to cut off very low biomass concen-
tration, (ii) an algorithm that detects contiguous
elements along the same ping and/or contiguous
elements from one ping to the next. Elements that fulfil
this continuity test are considered as belonging to the
same aggregation, (iii) a school mean energy threshold
to remove plankton aggregations from the analysis of
schools. Horizontal dimensions were corrected by taking
into account the school depth and the nominal beam

angle of the transducer (MacLennan and Simmonds,
1992). Schools with estimated negative length were
rejected.
‘‘SCHOOLBASE’’: Database used for training

purposes. Up to now, 3420 schools have been
encountered, digitized and analysed with this software.
More than 90% of these schools belong to the three
most common species in this area: sardine (Sardina
pilchardus), anchovy (Engraulis encrasicolus), and horse
mackerel (Trachurus trachurus). For 762 of the above
schools (22.3%) we acquired information by trawling.
We have chosen those schools detected during trawling
and when the catch was monospecific. However, only
270 of these 762 schools (35%) were identified with the
highest degree of certainty. From these 270 schools we

Figure 1. Diagram of a digitized school echogram with indications of some morphological and bathymetric descriptors. Grey
scaling of pixels corresponds to energy scale.
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used a subset of 140 that were sampled under similar
environmental conditions (same surveyed area, time of
day, season of year, distance from land, etc.) to avoid
variability in data, due to factors that have not been
used in the analysis. More than 25 parameters could be
calculated by ‘‘School’’ software classified into three
main groups: morphological, energetic, and bathymetric
(Table 1).

Neural network application

An artificial neural network (ANN) uses a highly inter-
connected group of simulated neurons (units, elements,
or nodes) that process information in parallel. Its main
concept is to approximate functions with raw sample
data, i.e. to approximate input–output responses learn-
ing from experience. A review of the current develop-
ment of ANNs and their applications can be found in
Rumelhart et al. (1986), Kosko (1992), Hecht-Nielsen
(1991), Lawrence (1993), and Ripley (1993).
From the broad range of ANNs, we are involved here

with pattern classifiers that use supervised learning algo-
rithms. The patterns (in our case the values of the school
descriptors) are presented to the network, which is
supposed to categorize them according to the predefined
classes (in our case the three species IDs: anchovy,
sardine, or horse mackerel). A supervisor presents sev-
eral patterns together with their correct classification.
After having been trained, the network should be able to

correctly classify patterns different from those used
during the training phase. The output of the network
can be seen as a mapping from the input vector space to
the output vector space (Ripley, 1993). Learning is taken
here as the means by which such mapping can be
constructed.
In the present study we used the most common

structures for supervised learning: the multi-layered
feed-forward networks. Neurons are organized in three
types of successive layers: the input layer that here
retains the school echogram descriptors, the hidden
layer(s), and the output layer that holds the classification
results, while neurons in a given layer do not connect to
each other. They take their inputs only from the pre-
vious layer and send their outputs only to the next one,
thus computing a result very quickly (Fig. 2). The
neurons are connected through a set of connection
weights, or synaptic weights that multiply the corre-
sponding input signal. During training, the network
takes every school as separate input (one training fact at
a time) and produces an actual output pattern (species’
ID) according to a sigmoid transfer function. Before
taking the next fact, it compares this output with the
desired one, calculating the mean squared error (MSE).
According to Ripley (1993), the weight parameter is
chosen to minimize the MSE, as would be done in a
non-linear regression. This is a general minimization
problem and the most widely used algorithm applied is
the generalized delta rule (GDR); the networks that
use this rule are called back-propagation networks
(Hecht-Nielsen, 1991). The delta rule states that if there
is a difference between the actual output pattern and the
target output during training, the weights are changed to
reduce the difference. The term ‘‘back-propagation’’
comes from the fact that correction signals propagate
back through the network during training.

Table 1. The main school descriptors used in the neural
network application grouped by category. The asterisk indi-
cates descriptors used in the form of summary statistics
(lowercase letters indicate the statistic, for example, min=mini-
mum, max=maximum, var=variance, cv=coef. of variation).

School descriptor
Symbols and
computations Units

General
Species ID SPE

Morphological
Height H m
Length L m
Perimeter P m
Area A m2

Elongation ELON=L/H
Circularity CIRC=P2/4 ðA
Rectangularity RECT=(LH)/A
*Radius of perimeter Rmean, Rmin, Rmax, Rcv m
Fractal dimension F=2[ln(P/4)]/ln(A)

Bathymetric
*School depth Dmean, Dmin, Dmax m
*Bottom depth Bmean, Bmin, Bmax m
*Altitude Amean, Amin, Amax m

Energetic
Total school energy E V2

*School energy Emean, Emax, Ecv V2

Index of dispersion I=Evar/Emean V2

Input layer

Hidden layer
Output layer

Figure 2. A generic feed-forward neural network with a single
hidden layer.
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At IMBC we have used two different commercial
neural network simulators to develop the specific ANNs
applications that can classify the species of small pelagic
fish from their school echograms. The first one (ANN1)
is based on the ‘‘BrainMaker Professional’’ (California
Scientific Software?) simulator, while the second
(ANN2) is based on the ‘‘NeuroShell II’’ and ‘‘Neuro
Windows’’ Dynamic Link Libraries (Ward Systems
Group?). The training is based on subsets of data for
which the species identity is known by means of trawling.
Different subsets of the known data are used for testing.
Their detailed topology is described and discussed in the
Results. The dynamic of the above ANNs can be modi-
fied by the researcher to meet different sets of learning
parameters, e.g. training tolerance, learning rate, noise
thresholds, ability to add hidden units if necessary dur-
ing training, and smoothing factors. Especially in ANN2
the classic back-propagation algorithm has been im-
proved by the momentum correction term (Rumelhart et
al., 1986) which is an exponential smoothing, appropri-
ate when the examples are presented in a random or
unstructured order in the network.

Results
Preliminary data analysis

Data were first analysed with classical statistical proce-
dures using commercial statistical software (SPSS for
Windows Release 6.0). Discriminant function analysis
(DFA) was performed using multiple linear regression
models. A stepwise variable selection method was
chosen and two discriminant functions were computed
for discrimination among the three species. Table 2
contains the classification results of DFA, and Figure 3
the discriminant plot.
The essential problem encountered with the applica-

tion of DFA (Haralabous and Georgakarakos, 1993)
was that the main assumptions of multivariate normality
of the data set and the equality of their covariance
matrices were not satisfied. Box’s M-test of equality of
group covariance matrices showed that the above
hypothesis must be rejected (p<0.001). Significant

overlaps in school features (see the discriminant plot)
indicated the low discriminating power of the functions.
This is also obvious in the relatively poor classification
results in Table 2.

Neural network topology and training

The input and output layer structure of the ANN1 and
ANN2 is relatively simple; there are as many units
(neurons) in the input layer as the number of input
descriptors, and as many units in the output layer as
the number of different species. Each output unit,
corresponding to a certain species, takes the value of 1 if
the school echogram belongs to this species, otherwise
the value of 0.
The structure of the hidden layer(s) varies depending

on the equilibrium of some other factors, such as
number of examples, duration of training, accuracy of
classification, training tolerance, etc. A general rule of
thumb is to start with a number of hidden units slightly
fewer than half the number of inputs and outputs
(Lawrence, 1993) and to continue adding hidden units
depending on the classification results of both training
and testing sets. Preliminary practice suggests that as the
number of hidden neurons approaches the number of
patterns in the training set, the danger of memorization
increases, i.e. the network may end up memorizing the
facts rather than learning to generalize about them; thus,
the network may train very well but test poorly. Here the
experiments suggest keeping the number of hidden units
in the range 12 to 18.
For a certain total number of hidden units, the

decision of choosing the number of hidden layers and
the number of neurons in each of those hidden layers
was based on the Fiesler’s maximum interconnection
topology theory (Fiesler, 1993). In ANN1 there is a
single hidden layer in the beginning, while during train-
ing the system can dynamically add new hidden layer(s)
according to the process of successful classifications. In
ANN2 we used two different network topologies: one
with a single hidden layer (ANN2-a) and a second with
two hidden layers (ANN2-b) for comparison. Table 3
summarizes the topology used for ANN1 and ANN2.

Table 2. Classification results of discriminant function analysis (DFA).

Actual group
No. of
cases

Predicted group membership

Anchovy Sardine Horse mackerel

1. Anchovy 75 71 (94.7%) 4 (5.3%) 0 (0.0%)
2. Sardine 40 10 (25.0%) 30 (75.0%) 0 (0.0%)
3. Horse mackerel 25 0 (0.0%) 1 (4.0%) 24 (96.0%)

Total 140 81 35 24

Percentage of ‘‘grouped’’ cases correctly classified 89.29%.
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In Figure 4 we can see the progress of the ANN1
training as a function of the errors of classifications on
the number of training cases in each output unit,
separately and overall. After some training rounds (each
of which involves a complete pass of 119 used cases) the
network could easily correctly classify school echograms
of horse mackerel. The correct classification of sardine
and anchovy school echograms needed almost five times
more training rounds. The same reaction has been
noticed using ANN2.
Experiments using different subsets of the available

data showed that the number of training rounds became
higher as the amount of data was enlarged, although the
amount of training cases was positively connected with
the accuracy of predictions. Generally, the number of
training rounds was larger when we used two hidden
layers (ANN2-b) because of the larger number of
weights needed.

Testing and accuracy of classification
To measure the classification accuracy of the networks,
we need to compare the actual output of the network
with the correct output over a number of testing trials.
This requires additional randomly selected examples
beyond those used for training the networks. The most
widely used method for obtaining this test set is to
reserve a separate representative subset of the available
examples. These example patterns must be new because,
if we use the same examples for training as are used
for testing, all we are determining is how well the
networks learned the training patterns. What we are
really interested in is how well the networks had learned
to approximate the ‘‘mapping’’ function for arbitrary
input values (Hecht-Nielsen, 1991).
In the present study we experimented with testing

subsets ranging from 5–35% of the available data.
Depending on other learning settings, the testing
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Figure 3. Plot of the three species data on the two discriminant functions obtained from DFA. -=Group centroids; .=Horse
mackerel; 4=sardine; ,=anchovy.

Table 3. Layer structure of neural networks ANN1 and ANN2. The last column contains the correct
classification results of test sets in the range 5% to 35% of the total available data.

Topology Network

Number of neurons per layer Correct
test
resultsInput Hidden1 Hidden2 Output

1 ANN1-a 25 14 — 3 89–96%
2 ANN1-b 25 12 3 3 88–97%
3 ANN2-a 25 18 — 3 94–100%
4 ANN2-b 25 13 2 3 92–98%
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predictions were correct for 88–100% of the testing
cases. The best testing performance was given by the
ANN2-a and it was in the range of 94–100% (Table 3).
In Table 4 we can see the detailed classification perform-
ance of the above network for each species if we use a
test set of 35% of the available data.

Contribution factors

The contribution factor of a variable is the sum of the
absolute values of the weights leading from this particu-
lar variable. In Figure 5 we can see the Pareto chart with
the contribution factors of the first 15 descriptors in
ascending order given by the ANN2-a. The order was
the same for these 15 descriptors in all topologies but,
after the 15th, the order was different in the various
configurations. Despite the absolute value, which differs
slightly even for the first 15 common-ordered variables,

their order indicates that the heaviest impact in classifi-
cation is assigned to the morphological and bathymetric
features, while the energetic properties of a school come
next.

Discussion
The problem of species identification of fish schools
using hydroacoustic data is approached in the present
study as a problem of mapping school echogram fea-
tures on species IDs. The morphological, bathymetric,
and energetic characteristics used here do not restrict the
impact of other recorded features, which may possibly
be better for the classification mapping. Comparative
experiments are needed for the evaluation of the best
sets of features. For the present study, a comparison
is made on a set of school echogram descriptors of
three species within the range of the explanatory limits

Figure 4. The progress of the neural network application ANN1.

Table 4. Classification results of a test set of 49 examples (35% of the available data set) using the
topology 3 (ANN2-a).

Actual group
No. of
cases

Predicted group membership

Anchovy Sardine Horse mackerel

1. Anchovy 23 22 (95.65%) 1 (4.35%) 0 (0.00%)
2. Sardine 18 1 (5.55%) 17 (94.44%) 0 (0.00%)
3. Horse mackerel 8 0 (0.00%) 0 (0.00%) 8 (100%)

Total 49 23 18 8

Percentage of ‘‘grouped’’ cases correctly classified 95.92%.
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(concerning the ecological characteristics of the certain
sampling area, the spatio-temporal features of sampling,
the monospecific composition of schools, the instrument
and software used, etc.). The specific results on the
impact of each descriptor variable must also be seen
under the above limitations, as well as the size and
species composition of the sample.
The small amount of available data affects the

validation of the network used and its accuracy. As is
often noticed, there are probably enough data to train
the network, but not enough to hold out for validation
and acceptance test sets. One of the ways to decide how
large the test set should be is to try progressively larger
test sets until the MSE starts to converge to a fixed
value. This value is one of the most important measures
of error, and is thus essential for the validation of the
network. Starting from 5% of the available examples in
our experiments, we noticed that the MSE did not
clearly converge to a fixed value even when about 55% of
the total examples had been used, obviously because of
the progressive removal of necessary cases from a small
training set. In these instances, one option that can help
is the ‘‘leaving-one-out’’ method proposed by Hecht-
Nielsen (1991): if there are N examples available, then
train the network N different times using N"1 of the
examples, each time excluding a single different example
as a singleton test set. On each of these N trials, the
training set is used for testing the network during
training, and training is ended when the error curve
levels out. Then the error of the network on the held-out
test example is measured. After doing this N times the
mean of the squared errors made on the held-out
examples is calculated. This is one of the ways to

estimate the overall network performance that would be
achieved if more data from the real environment were
available. In our study this value was found to be at
0.071 for the ANN2-a configuration. This means that
there is an expected error of 7.1% for each output
neuron (recall that the output values have a range
between 0 and 1).
It must be noted that a comparison between neural

networks and DFA is not straightforward because: (a)
an ANN can be tested only on a subset of training-free
cases, while DFA can acceptably be tested on the whole
data set. A proper comparison should take a single
subset of the data to train the ANN and DFA, and then
a separate subset to test both the ANN and DFA; (b)
DFA recommends the absence of correlation among
descriptors, suggesting techniques to ensure this directly
(for example through selection of descriptors ranked by
correlation), or indirectly (in combination with PCA and
the use of the principal components as descriptors). In
the applied ANNs, however, we could use all the
descriptors without being worried about correlations,
leaving the ANN to support an impact factor for each of
them; (c) the high number of descriptor variables for the
above three species implies that a much larger sample
than the available 140 cases is needed for a proper DFA.
This is a fixed limit for the number of descriptors that
can be tested at once in a DFA, while in the ANNs it
affects only the convergence of the mean squared error.
The main reason for artificial neural networks being

potentially useful for classification problems is their
property of being classifiers which construct non-linear
functions from inputs to targets. Most classical statisti-
cal techniques that could be used instead of ANNs are
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Figure 5. Pareto chart of the contribution factors of the first 15 descriptors (ANN1-a).
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severely constrained if linear regression models have to
be used. During the 1980s, the proliferation of computer
power removed the constraints of linearity and a
number of non-linear approaches have been developed
for regression and discrimination, often referred to as
semi-parametric methods. According to Ripley (1993)
‘‘both feed-forward neural networks and semi-
parametric statistics are ‘black-box’ approaches; they
provide a prediction for any input, but no readily
interpretable explanation for that prediction. As such
they lose some of the power of linear statistical models
in statistical inference’’. However, many approaches
are now being combined to explain the basis for the
predictions made by neural networks.
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